42 research outputs found

    A non-linear approach to modelling and control of electrically stimulated skeletal muscle

    Get PDF
    This thesis is concerned with the development and analysis of a non-linear approach to modelling and control of the contraction of electrically stimulated skeletal muscle. For muscle which has lost nervous control, artificial electrical stimulation can be used as a technique aimed at providing muscular contraction and producing a functionally useful movement. This is generally referred to as Functional Electrical Stimulation (FES) and is used in different application areas such as the rehabilitation of paralysed patient and in cardiac assistance where skeletal muscle can be used to support a failing heart. For both these FES applications a model of the muscle is essential to develop algorithms for the controlled stimulation. For the identification of muscle models, real data are available from experiments with rabbit muscle. Data for contraction with constant muscle length were collected from two muscle with very different characteristics. An empirical modelling approach is developed which is suitable for both muscles. The approach is based on a decomposition of the operating space into smaller sub-regions which are then described by local models of simple, possibly linear structure. The local models are blended together by a scheduler, and the resulting non-linear model is called a Local Model Network (LMN). It is shown how a priori knowledge about the system can be used directly when identifying Local Model Networks. Aspects of the structure selection are discussed and algorithms for the identification of the model parameters are presented. Tools of the analysis of Local Model Networks have been developed and are used to validate the models. The problem of designing a controller based on the LMN structure is discussed. The structure of Local Controller Networks is introduced. These can be derived directly from Local Model Networks. Design techniques for input-output and for state feedback controllers, based on pole placement, are presented. Aspects of the generation of optimal stimulation patterns (which are defined as stimulation patterns which deliver the smallest number of pulses to obtain a desired contraction) are discussed, and various techniques to generate them are presented. In particular, it is shown how a control structure can be used to generate optimal stimulation patterns. A Local Controller Network is used as the controller with a design based on a non-linear LMN model of muscle. Experimental data from a non-linear heat transfer process have been collected and are used to demonstrate the basic modelling and control principles throughout the first part of the thesis

    A functional electrical stimulation system for human walking inspired by reflexive control principles

    Get PDF
    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation–assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking

    Investigation of different stimulation patterns with doublet pulses to reduce muscle fatigue

    Get PDF
    Introduction: Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid muscle fatigue which limits its applications. Methods: The objective of this study is to investigate the effects on the onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses: Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old) participated in this study. Ultrasound videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch–tetanus ratio. Results: The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively, than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later during asynchronous stimulation; however, this was only found to be statistically significant for one of two methods used to calculate the group mean. Although no significant difference was found in pre-post twitch–tetanus ratio, there was a trend towards these effects. Conclusion: In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional electrical stimulation applications in some conditions

    Investigation of robotics-assisted tilt-table therapy for early-stage rehabilitation in spinal cord injury

    Get PDF
    This article provides the outcome of an investigation of robotics-assisted tilt-table therapy for early-stage rehabilitation in spinal cord injur

    Abdominal functional electrical stimulation to enhance mechanical insufflation-exsufflation

    Get PDF
    Context: Respiratory complications, attributed to the build-up of secretions in the airway, are a leading cause of rehospitalisation for the tetraplegic population. Previously, we observed that the application of Abdominal Functional Electrical Stimulation (AFES) improved cough function and increased demand for secretion removal, suggesting AFES may aid secretion clearance. Clinically, secretion clearance is commonly achieved by using Mechanical insufflation-exsufflation (MI-E) to simulate a cough. In this study the feasibility of combining AFES with MI-E is evaluated. Findings: AFES was successfully combined with MI-E at eight fortnightly assessment sessions conducted with one sub-acute participant with tetraplegia. By using the signal from a pressure sensor, integrated with the MI-E device, AFES was correctly applied in synchrony with MI-E with an accuracy of 96.7%. Acute increases in exhaled volume and peak flow were observed during AFES assisted MI-E, compared to MI-E alone, at six of eight assessment sessions. Conclusion: The successful integration of AFES with MI-E at eight assessment sessions demonstrates the feasibility of this technique. The acute increases in respiratory function observed at the majority of assessment sessions generate the hypothesis that AFES assisted MI-E may be more effective for secretion clearance than MI-E alone

    Technical developments of functional electrical stimulation to restore gait functions : sensing, control strategies, and current commercial systems

    Get PDF
    The work presents a review on the technological advancements of functional electrical stimulation (FES) neuroprostheses to restore gait walking over the last decades. The aim of an FES intervention is to functionally restore and rehabilitate individuals with motor disorders, such as stroke, spinal cord injury, multiple sclerosis, and others. The technique has been applied for widespread practical use for several years due to the rapid development of micro- and nano-technology. This technical review covers neuroprostheses developed within academia and currently available on the market. These systems are thoroughly analyzed and discussed with particular emphasis on the sensing techniques and control strategies. In the last part, a combination of FES technology and exoskeletons is presented as an emerging solution to overcome the drawbacks of current FES-based neuroprostheses, and recommendations on future research direction are suggeste

    Abdominal functional electrical stimulation to assist ventilator weaning in acute tetraplegia: a cohort study

    Get PDF
    Background Severe impairment of the major respiratory muscles resulting from tetraplegia reduces respiratory function, causing many people with tetraplegia to require mechanical ventilation during the acute stage of injury. Abdominal Functional Electrical Stimulation (AFES) can improve respiratory function in non-ventilated patients with sub-acute and chronic tetraplegia. The aim of this study was to investigate the clinical feasibility of using an AFES training program to improve respiratory function and assist ventilator weaning in acute tetraplegia.<p></p> Methods AFES was applied for between 20 and 40 minutes per day, five times per week on four alternate weeks, with 10 acute ventilator dependent tetraplegic participants. Each participant was matched retrospectively with a ventilator dependent tetraplegic control, based on injury level, age and sex. Tidal Volume (VT) and Vital Capacity (VC) were measured weekly, with weaning progress compared to the controls.<p></p> Results Compliance to training sessions was 96.7%. Stimulated VT was significantly greater than unstimulated VT. VT and VC increased throughout the study, with mean VC increasing significantly (VT: 6.2 mL/kg to 7.8 mL/kg VC: 12.6 mL/kg to 18.7 mL/kg). Intervention participants weaned from mechanical ventilation on average 11 (sd: ± 23) days faster than their matched controls.<p></p> Conclusion The results of this study indicate that AFES is a clinically feasible technique for acute ventilator dependent tetraplegic patients and that this intervention may improve respiratory function and enable faster weaning from mechanical ventilation.<p></p&gt

    Programación integrada para el rápido prototipado de sistemas de rehabilitación

    Get PDF
    La memoria de este proyecto describe el desarrollo del prototipo de un sistema de control de un dispositivo de estimulación eléctrica. Partiendo de un sistema ya existente en ordenadores de sobremesa, el controlador se implementó sobre una plataforma más flexible y económica, pero también más limitada: Raspberry Pi. El proyecto incluye desde la configuración del protocolo de comunicación entre el dispositivo de estimulación y la Raspberry Pi, hasta el diseño de un interfaz sencillo que permita, a usuarios sin conocimientos técnicos, controlar la estimulación en tiempo real. Además el sistema será responsable de controlar la frecuencia de estimulación y habilitará opciones de recopilación de datos sobre la estimulación eléctrica

    Bipedal robotic walking control derived from analysis of human locomotion

    Get PDF
    This paper presents a human-inspired approach to the design of bipedal robotic walking control, using information that appears to be intrinsic to human walking. We first investigated the correlation between ground contact information from the feet and leg muscle activity (EMG) in human walking. From this relationship filter functions were created which relate the sensory input to motor actions producing a minimal, nonlinear and robust robotic controller which incorporates hip, knee and ankle control. The developed control system was subsequently analysed by applying it to our bipedal robot "RunBot III", a minimalistic robotic walker designed without any central pattern generators (CPGs) or precise trajectory control. Our results demonstrated that this controller, which regards the function between the sensory input and motor output as a black box derived from human data, can generate stable robotic walking. This indicates that complex locomotion patterns can result from a simple model based on reflexes and supports the premise that human-inspired methods have the potential for use in the control of robotics or in the development of assistive devices for gait

    Does the motor system need intermittent control?

    Get PDF
    Explanation of motor control is dominated by continuous neurophysiological pathways (e.g. trans-cortical, spinal) and the continuous control paradigm. Using new theoretical development, methodology and evidence, we propose intermittent control, which incorporates a serial ballistic process within the main feedback loop, provides a more general and more accurate paradigm necessary to explain attributes highly advantageous for competitive survival and performance
    corecore